	Unit – 1 Fixed beam				
1	Ab	eam which is inbuilt in at its support is a	calle	d	
	А.	Cantilever beam	B.	Simply supported beam	
	C.	Fixed beam	D.	Continuous beam	
2	Fixe	ed beam is also known as			
	А.	Encaster beam	B.	Constressed beam	
	C.	In built beam	D.	Constricted beam	
3	Int	fixed beams, the slope at the supports be	e		
	A.	Minimum	В.	Zero	
	C.	Maximum	D.	None of these	
4	Αt	beam 6 metres long is fixed at it ends	s. It	carries a udl of 5 kN/m. Find the	
	max	timum bending moment in the beam.	D	20 kNm	
	А.	13 KINIII	D.	20 KINIII	
	C.	35 kNm	D.	40 kNm	
5		changes induce large stresses in a	fixed	l beam.	
	А.	Slope	B.	Deflection	
	C.	Temperature	D.	None of these	
6	In f	ixed beams, the maximum deflection at		is reduced.	
	А.	Centre	B.	Supports	
	C.	At point of loading	D.	None of these	
7	Fixi	ing couples means			
	А.	End moments	B.	Support couples	
	C.	Support moments	D.	End supports	
8	Calculate the maximum bending moment in fixed beam for the following figure.				
	А.	17 kN-m	B.	12.5 kN-m	
	C.	15.625 kN-m	D.	18 kN-m	
9	The	e maximum negative bending moment	in fi	xed beam carrying UDL occurs at	
	<u> </u>	Mid span	B.	1/3 of the span	
	C.	Supports	D.	Half of the span	
10	Ab	eam is a structural member which is sub	ojecte	ed to	
	А.	Axial tension or compression	В.	Transverse loads and couples	
	C.	Twisting moment	D.	None of these	

11	Which of the following are statically determinate beams?			
	A.	Only simply supported beams	В.	Cantilever, overhanging and
				simply supported
	C.	Fixed beams	D.	Continuous beams
12	Ac	antilever is a beam whose		
	A.	Both ends are supported either on	В.	One end is fixed and other end is
		rollers or hinges		free
	C.	Both ends are fixed	D.	None of these
13	In a	simply supported beam, bending mome	ent at	the end
	А.	Is always zero if it does not carry couple at the end	В.	Is zero, if the beam has uniformly distributed load only
	C.	Is zero if the beam has concentrated loads only	D.	None of these
14	For	any part of the beam, between two cond	centra	ated load Shear force diagram is a
	A.	Horizontal straight line	B.	Vertical straight line
	C.	Line inclined to x-axis	D.	Parabola
15	For	any part of a beam between two conce	entrat	ted load, Bending moment diagram
	is a			
	A.	Horizontal straight line	В.	Vertical straight line
	C.	Line inclined to x-axis	D.	Parabola
16	For	any part of a beam subjected to uniform	nly d	istributed load, Shear force diagram
	is	1		
	А.	Horizontal straight line	В.	Vertical straight line
	C.	Line inclined to x-axis	D.	Parabola
17	For diag	any part of a beam subjected to unifo gram is	rmly	distributed load, bending moment
	А.	Horizontal straight line	B.	Vertical straight line
	C.	Line inclined to x-axis	D.	Parabola
18	In a	simple supported beam having length	= 1 a	nd subjected to a concentrated load
	(W)	at mid-point.		
	А.	Maximum Bending moment = $Wl/4$	В.	Maximum Bending moment =
	C	at the mid-point $W1/8$	D	W1/4 at the end Maximum Banding moment –
	C.	at the mid-point	D.	W1/8 at the end
19	In a	a simply supported beam subjected to	unifo	ormly distributed load (w) over the
	enti	re length (l), total load=W, maximum B	endi	ng moment is
	А.	$Wl/8 \text{ or } wl^2/8 \text{ at the mid-point}$	В.	$Wl/8 \text{ or } wl^2/8 \text{ at the end}$
	C.	$Wl/4 \text{ or } wl^2/4$	D.	W1/2
20	For	a beam, if fundamental equations of s	tatics	s are not sufficient to determine all
	the	reactive forces at the supports, the struc	ture	is said to be
	А.	Determinate	В.	Statically determinate
	C.	Statically indeterminate	D.	None of these
21	For	a beam, if fundamental equations of s	tatics	s are sufficient to determine all the
	reactive forces at the supports, the structure is said to be			

	A.	Determinate	B.	Statically determinate	
	C.	Statically indeterminate	D.	None of these	
22	If the beam is supported so that there are only three unknown reactive elements at				
	the supports. These can be determined by using				
	А.	$\Sigma H = 0$	В.	Σ H=0 , Σ V=0	
	C.	Σ H=0, Σ V=0, Σ M=0	D.	None of these	
23	A b	eam having fixed and free ends then it i	s call	led	
	A.	Fixed	В.	Continuous	
	C.	Cantilever	D.	Simply Supported	
24	A b	eam having pinned and roller ends then	it is	called	
	А.	Fixed	B.	Continuous	
	C.	Cantilever	D.	Simply Supported	
25	Sin	pply supported beam is			
	А.	Determinate	B.	Statically determinate	
	C.	Statically indeterminate	D.	None of these	
26	Wh	ich of the following are statically indete	rmin	ate beams?	
	А.	Only simply supported beams	B.	Cantilever, overhanging and	
				simply supported	
	С.	Fixed beams, Continuous beams and	D.	None of these	
27	Def	lection at the middle of simply supporte	ed be:	am is	
	A.	More	B.	Less	
	C.	Zero		None of these	
28	Def	lection at the middle of fixed beam is			
20	A	More	B	Less	
	C	Zero	D.	None of these	
29	C. Rer	ding moment at the centre of the bea	m is	than that in case of fixed	
27	bea	m.	111 15		
	А.	More	B.	Less	
	C.	Zero	D.	None of these	
30	Ber	nding moment at the centre of the beam	n is .	than that in case of simply	
	sup	ported beam.	-	-	
	A.	More	В.	Less	
	С.	Zero	D.	None of these	
31	Stre	ength of simply supported beam is	_ tha	n the strength of fixed beam.	
	Α.	More	В.	Less	
	C.	Zero	D.	None of these	
32	Stre	ength of fixed beam is than the str	rengt	h of simply supported beam.	
	А.	More	В.	Less	
	C.	Zero	D.	None of these	
33	In s	imply supported beam AB, at the suppo	rts, s	lopes are produced.	

	A.	θ_{A}, θ_{B}	B.	$\theta_{\rm A}$
	C.	$\theta_{\rm B}$	D.	None of these
34	In f	ixed beam AB, at the supports, slopes a	re	
	А.	$\theta_A = 0, \theta_B = 0$	B.	$\theta_A = 0$
	C.	$\theta_B = 0$	D.	None of these
35	In s	imply supported beam AB, at the suppo	rts, r	noments are
	A.	$\mathbf{M}_{\mathrm{A}}=0,\mathbf{M}_{\mathrm{B}}=0$	В.	$M_A = 0$
	C.	$M_{\rm B} = 0$	D.	None of these
36	In f	ix beam AB, at the supports, fixed end r	nom	ents are produced.
	A.	M_A , M_B	В.	M _A
	C.	M _B	D.	None of these
37	Stre	esses are produced in the fixed beam due	e to c	change in
	A.	Temperature	В.	Change in length
	C.	Change in cross section	D.	None of these
38	Αt	beam 5 metres long is fixed at it ends.	It c	carries a udl of 10 kN/m. Find the
	max	ximum bending moment in the beam.	D	15 kN m
	A.	20.85 KN-III	D. D	12 25 kN m
30	C.	no kin-ini	D. It car	rries a central point load of 50 kN
39	Find the maximum bending moment in the beam			
	A.	17 kN-m	B.	12.5 kN-m
	C.	13.25 kN-m	D.	18 kN-m
40	A t	beam 6 meters long is fixed at it ends.	It c	carries a udl of 10 kN/m. Find the
	A.	17 kN-m	B.	12.5 kN-m
	C.	13.25 kN-m	D.	30 kN-m
41	Stat	tically beams are		
	А.	The beams which can be analysed completely using equations of equilibrium	B.	The beam which can be analysed using static equations
	C.	Fixed beams at both ends	D.	None of the above
42	The	e number of reaction components at the f	ixed	end of beam are
	A.	1	В.	2
	C.	3	D.	4
43	One	e end fixed and other end roller/hinged is	s call	led as beam.
	A.	Cantilever	В.	Propped cantilever
	C.	Overhanging	D.	None of the above
44	The	reaction line roller support with respect	t to p	point of contact is
	A.	Oblique	B.	Perpendicular
	C.	Obtuse	D.	Parallel
45	When load acts at constant rate at a given length of beam is called			

	A.	UVL		В.	UDL
	C.	Point load		D.	Triangular load
46	Wh	ich of the following	is determinate bean	n?	
	А.	Simply supported b	eam	В.	Continuous beam
	C.	Propped cantilever	beam	D.	Fixed beam
47	A b	eam with three or more than three supports is called as			
	А.	Cantilever beam		B.	Fixed beam
	C.	Continuous beam	D.		Fixed but
48	Rol	ller support in the beam will have how many unknown reactions			
	A.	1		B.	2
	C.	3		D.	4
49	Wh	hich one of the following is indeterminate beam?			
	А.	Simply supported b	eam	B.	One end hinged, other on roller
	C.	Cantilever		D.	Both ends hinged

	Unit – 5 Combine Direct and Bending stress				
1	Wh	en load is acting along the longitudinal a	axis	of column, it is known a	
	А.	Eccentric load	B.	Axial load	
	C.	Concentrated load	D.	None of these	
2	Alo	bad whose line of action does not coinci-	de w	ith the axis of column, is known as	
	А.	Eccentric load	В.	Axial load	
	C.	Concentrated load	D.	None of these	
3	the	horizontal distance between the longitu	ıdina	l axis of column and line of action	
	ofl	oad is known as	-		
	A.	Eccentricity	В.	Bending	
	C.	Stress	D.	None of these	
4	Wh	en short column is subject to axial c	omp	ression force, only is	
	A.	Bending stress	B.	Shear stress	
	C	Direct stress	D.	None of these	
5	C. The	load at which a vertical compression m	emb	er just buckle is known as	
	A	Critical load	B	Crippling load	
	C	Buckling load	D.	Anyone these	
6	A c	olumn that fails due to direct stress is ca	lled		
	A	Short column	B	Long column	
	C	Medium column	D.	None of these	
7	The	direct stress included in a long column	is	as compared to bending stress.	
	A.	More	В.	Less	
	C.	Same	D.	Negligible	
8	For	long columns, the value of buckling loa	d is	crushing load.	
	A.	Less than	B.	More than	
	C.	Equal to	D.	None of these	
9	Cor	npression members always tend to buck	le in	the direction of	
		Vertical axis	R	Horizontal axis	
	л. С	Minimum cross section	D.	Least radius of gyration	
10	Δ n	pasonry dam may fail due to	D.	Least radius of gyration	
10		Tension in the masonry of the dam	R	Overturning of the dam	
	л.	and its base	Ъ.	Overturning of the dam	
	C.	Crushing of masonry at the base of	D.	Anyone of the above	
	_	the dam			
11	In o	order to prevent crushing of masonry at t	the b	ase of the dam, the maximum stress	
	A.	Equal to	B.	Less than	
	C	More than	D.	None of these	
12	The	limit of eccentricity is based on tension	1 con	dition.	
	A.	True	B.	False	
			2.		

13	In order to know whether a column is long or short, we must know its slenderness			
	A. True	B.	False	
14	Compression members always tend to buck	le in	the direction of the	
	A. Axis of load	B.	Perpendicular to the axis of load	
	C. Minimum cross section	D.	Least radius of gyration	
15	When a column is subjected to eccentric	load	the edge of column towards the	
10	eccentricity will be subjected toa	nd th	e opposite edge will be subjected to	
	·	r		
	A. Maximum stresses	В.	Minimum stress	
	C. Bothe A and B	D.	None of these	
16	In case of eccentrically loaded struts	is pr	referred.	
	A. Solid section	В.	Hollow section	
	C. Composite section	D.	Reinforced section	
17	In order to avoiding sliding of masonry day	m, th	e force of friction between the dam	
	and soil should be at leasttotal wate	er pre	essure per metre length.	
	A. Equal to	B.	1.5 times	
	C. Double	D.	2.5 times	
18	Direct stress is equal to			
	A. Force / area	B.	Force / volume	
	C. Volume / force	D.	Area / force	
19	When load on column is, stres	sses a	at both the edges will be equal and	
	compressive in nature.	П	Tansier load	
	A. Axiai load	D.		
20	C. Shear load	D.	Eccentric load	
20	that if load acts within this distance there is	no t	bad from the centre of column, such	
	distance is called	10 1		
	A. Direct stress	B.	Bending stress	
	C. Limit of eccentricity	D.	Kernel of section	
21	Bending stress is equal to	•		
	A. Moment / section modulus	B.	Moment / eccentricity	
	C. Moment of inertia / section modulus	D.	None of the these	
22	Maximum stress is equals to	•		
	A. Direct stress + bending stress	B.	Direct stress - bending stress	
	C. Direct stress x bending stress	D.	Direct stress / bending stress	
23	Minimum stress is equals to	-		
	A. Direct stress + bending stress	B.	Direct stress - bending stress	
	C. Direct stress x bending stress	D.	Direct stress / bending stress	
24	If direct stress > bending stress, minimum s	stress	is equal to	
	A. Compressive	B.	Tensile	

	C.	Compressive and Tensile	D.	None of these
25	If d	irect stress < bending stress, minimum s	tress	is equal to
	А.	Compressive	B.	Tensile
	C.	Compressive and Tensile	D.	None of these
26	Wh	en load on column is axial, stresses at b	oth t	he edges will be equal and
	in n	ature.	-	
	А.	Compressive	В.	Tensile
	C.	Compressive and Tensile	D.	None of these
27	Wh	en load is acting at the point of limit of	ecce	ntricity, minimum stress is equal to
	А.	Compressive	В.	Tensile
	C.	Zero	D.	None of these
28	Wh	en load is acting within limit of eccentri	city,	minimum stress is equal to
	A.	Compressive	В.	Tensile
	C.	Compressive and Tensile	D.	None of these
29	Wh	en load is acting beyond the limit of ecc	entri	city, minimum stress is equal to
	А.	Compressive	B.	Tensile
	C.	Compressive and Tensile	D.	None of these
30	For	no tension in the column, the condition	s mu	st be satisfied
	А.	Load must not be within <i>e</i> limit	B.	Min. Stress should not be
	~		-	negative(tensile)
	С. –	Both A and B	D.	None of these
31	For no tension condition, the eccentricity should be than or equal to Z/A . Where $Z = Section modulus A = Cross sectional area$			
	A.	More	B.	Less
	C.	Zero	D.	None of these
32	We	ight of dam equal to		
	A.	c/s area of dam + density of dam	B.	c/s area of dam - density of dam
		material		material
	C.	c/s area of dam x density of dam	D.	c/s area of dam / density of dam
22	Dar	material		material
33	Der	$\frac{201816}{2018}$	D	15 I-NI/m ³
	A.	20 kN/m^3	D.	15 km/m^3
24	U.	10 KN/III	D.	05 KN/III
34		al water pressure acts nonzontarry at ner $\frac{1}{2}$		
	A.	h/2	D.	None of these
25	C.		D.	None of these
35	Ma	ximum pressure at the base of dam is eq	ual t	0
	А.	$\frac{W}{M}\left[1+\frac{6e}{2}\right]$	B	$\frac{W}{1}$ $\begin{bmatrix} 1 \\ - \\ \frac{6e}{2} \end{bmatrix}$
		b [b]		
	C.	Zero	D.	None of these
36	Mir	nimum pressure at the base of dam is equ	ual to)

	A. $\frac{W}{V} \left[1 + \frac{6e}{V} \right]$	B.	$\frac{W}{V}\left[1-\frac{6e}{V}\right]$
	C. Zero	D.	<i>D L D J</i> None of these
37	is a structure used to retain soil	(eart	h).
	A Retaining wall	R	Barrier
	C Dam	D.	None of these
38	is a structure used to retain wate	D.	None of these
50	A Weirs	R	Barrage
	C Dam	D. D	all of these
39	To avoid tension at the base of retaining	D.	ll/dam minimum stress should be
57		, wa	ani, minimum suess should be
	A. Positive	B.	Negative
	C. Zero	D.	None of these
40	For no tension at base, eccentricity should b	be les	ss than
	A. b/2	B.	b/3
	C. b/6	D.	None of these
41	Which are the forces acting on retaining wa	ll/da	m?
	A. Total earth/water pressure	B.	Weight of wall/dam
	C. Both A and B	D.	None of these
42	A dam retains water and subject to		
	A. Water pressure	B.	Earth pressure
	C. Both A and B	D.	None of these
43	A retaining wall retains soil and subject to		
	A. Water pressure	В.	Earth pressure
	C. Both A and B	D.	None of these
44	To avoid overturning of retaining wall/dam	,	
	A. Resisting moment > overturning	B.	Resisting moment < overturning
	moment	D	moment
	C. Resisting moment = overturning	D.	None of these
45	To avoid tension at the base, resultant must	lie v	vithin
	A. $1/3^{rd}$ of the base width	B.	$1/2^{rd}$ of the base width
	C. $1/5^{rd}$ of the base width	D.	None of these
46	If retaining wall / dam are safe in tension	at b	ase, it becomes safe against
	automatically.	_	
	A. Sliding	В.	Crushing
	C. Overturning	D.	None of these
47	To avoid crushing at base of retaining wall/	dam,	,
	A. Max. Pressure at the base less than	B.	Max. Pressure at the base greater
	the permissible crushing stress		than the permissible crushing
	C. Max. Pressure at the base equal to	D.	None of these
1			· · · · · · · · · · · · · · · · · · ·

		permissible crushing stress			
48	For no tension at base, resultant must cut the base within middle third portion, to				
	avo	id tension at base. This rule is known as			
	А.	Middle third rule	B.	Middle forth rule	
	C.	Middle half rule	D.	None of these	
49	Density of masonry is				
	А.	20 kN/m^3	В.	15 kN/m^3	
	C.	25 kN/m^3	D.	None of these	
50	Density of concrete is				
	A.	20 kN/m^3	В.	15 kN/m^3	
	C.	25 kN/m^3	D.	None of these	

	Unit – 6 Principle planes and principle stresses				
1	The	direct stress, across a principal plane, is know	n as	principal stress.	
	A.	True	B.	false	
2	Whie	ch principle plane carries minimum direct stre	ess?		
	А.	Major principle plane	B.	Minor principle plane	
	C.	Intermediate principle plane	D.	None of these	
3	The	plane on which two direct stresses (σ_1	, σ ₂)	and, shear stress (τ) are acting on	
	perp	endicular planes, then			
	А.	$\sigma_2 = 0, \tau = 0$	В.	$\sigma_1 = 0, \tau = 0$	
	<u>C.</u>	$\sigma_1 = 0, \sigma_2 = 0, \tau = 0$	D.	None of these	
4	An e	lement is subjected to a state of simple shear	of 6) N/mm ² . Find out principal stresses.	
	А.	$\sigma_{n1} = 60 \text{ N/mm}^2$, $\sigma_{n2} = -60 \text{ N/mm}^2$	В.	$\sigma_{n1} = 60 \text{ N/mm}^2$, $\sigma_{n2} = 60 \text{ N/mm}^2$	
	C.	$\sigma_{n1} = -60 \text{ N/mm}^2, \sigma_{n2} = -60 \text{ N/mm}^2$	D.	None of these	
5	A bl	ock is subjected to a complimentary shear structure in align dist. 208 million and a structure in a large	ress (of 10 N/mm ² . Find tangential stresses on a	
		$\frac{1}{8.66 \text{ N/mm}^2}$	B	-5 N/mm^2	
	C	10 N/mm^2	D.	0 N/mm^2	
6	C.	ace of material is subjected to a tensile stre		$f = 60 \text{ N/mm}^2$ and compressive stress of 20	
0	N/m	m^2 mutually perpendicular to each other. Find	d ma	ximum shear stress.	
	A.	8.66 N/mm ²	В.	20 N/mm ²	
	C.	10 N/mm ²	D.	0 N/mm ²	
7	When a body is subjected to a direct tensile stress (σ) in one plane, then normal stress on an				
	oblic	ue section of the body inclined at an angle θ	to th	e normal of the section is	
	A.	$\sigma \cos \theta$	В.	$\sigma \sin \theta$	
	С.	$\sigma \cos^2 \theta$	D.	$\sigma \sin^2 \theta$	
8	A be maxi	bdy is subjected to a direct tensile stress imum at a section inclined at to the	(σ) norm	in one plane. The shear stress is al of the section.	
	A.	45° and 90°	B.	45° and 135°	
	C.	60° and 150°	D.	30° and 135°	
9	When a body is subjected to a direct tensile stress (σ_x) in one plane accompanied by a simple shear stress (τ_{xy}) , the maximum shear stress is				
	A.	$\frac{\sigma_x}{2} + \frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	B.	$\frac{\sigma_x}{2} - \frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	
	C.	$\frac{\sigma_x}{2} + \frac{1}{2}\sqrt{\sigma_x^2 - 4\tau_{xy}^2}$	D.	$\frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	
10	A body is subjected to a tensile stress of 1200MPa on one plane and other tensile stress of 600 MPa on a plane at right angles of the former. It is also subjected a shear stress 400 MPa on the				

	same planes. The minimum normal stress will be			
	A.	400 MPa	B.	500 MPa
	C.	900 MPa	D.	1400 MPa
11	The	plane, on which only direct stress (normal str	ess) i	is acting is called
	A.	Principle plane	В.	Principle stress
	C.	Complimentary shear stress	D.	None of these
12	Prine	ciple plane may be oriented in direction of		
	A.	Vertical	B.	Horizontal
	C.	Inclined	D.	All of these
13	The plane	plane on which only one direct stress (σ_1) is e having angle of θ° .	actin	g, then find normal stress (σ_n) on inclined
	A.	$\frac{(\sigma_1 + \sigma_2)}{2} + \frac{(\sigma_1 - \sigma_2)}{2}\cos 2\theta + \tau \sin 2\theta$	B.	$\frac{(\sigma_1 + \sigma_2)}{2} - \frac{(\sigma_1 - \sigma_2)}{2} \cos 2\theta + \tau \sin 2\theta$
	C.	$\frac{(\sigma_1 - \sigma_2)}{2} \sin 2\theta - \tau \cos 2\theta$	D.	$\sqrt{\sigma_n^2 + \sigma_t^2}$
14	At a are a incli	certain point in a strained material two stre acting on plane mutually perpendicular to ϵ	sses each	of 100 N/mm ² and 60 N/mm ² both tensile other. Find out normal stress on a plane $\sum N/mm^2$
	A.	90 N/mm ²	B.	- 90 N/mm ²
	C.	34.64 N/mm ²	D.	- 34.64 N/mm ²
15	The plane	plane on which two direct stresses (σ_1 , σ_2) areas. Find out principle stresses.	and, s	shear stress(τ) are acting on perpendicular
	А.	$\sigma_{n1} = \frac{(\sigma_1 + \sigma_2)}{2} + \sqrt{(\frac{\sigma_1 - \sigma_2}{2})^2 + \tau^2}$	B.	$\sigma_{n2} = \frac{(\sigma_1 + \sigma_2)}{2} - \sqrt{(\frac{\sigma_1 - \sigma_2}{2})^2 + \tau^2}$
	C.	Both (A) and (B)	D.	None of these
16	A pi	ece of material is subjected to a tensile stres	ss of	100 N/mm ² and compressive stress of 40
	N/m	m^2 mutually perpendicular to each other. Find	d max	ximum shear stress. 00 N/mm^2
	A.	30 N/mm^2	B.	-90 IN/IIIII 24 64 N/mm ²
17	C.	54.04 IN/IIIII	D.	- 54.04 1\/11111
17	Whe oblic	n a body is subjected to a direct tensile str que section will be maximum, when θ is equa	ress (l to	σ) in one plane, the normal stress on an
	A.	0°	B.	30°
	C.	45°	D.	90°

18	When a body is subjected to a direct tensile stress (σ) in one plane, the maximum shear stress is the maximum normal stress.					
	A.	Equal to	B.	One-half		
	C.	Two-third	D.	twice		
19	A bo	A body is subjected to a direct tensile stress of 300MPa in one plane accompanied by a simple				
	shea	r stress of 200MPa. The maximum normal str	ress v	vill be		
	A.	- 100 MPa	B.	230 MPa		
20	C.	S00 MFa	D.	400 MFa		
20	MPa on a plane at right angles of the former. It is also subjected a shear stress 400 MPa same planes. The maximum shear stress will be					
	A.	400 MPa	В.	500 MPa		
	C.	900 MPa	D.	1400 MPa		
21	On t	On the principle plane, shear stress is zero.				
	А.	True	В.	False		
	C.		D.			
22	The	plane on which only one direct stress (σ_1) is	acting	g, then		
	А.	$\sigma_2 = 0, \tau = 0$	В.	$\sigma_1 = 0, \tau = 0$		
	C.	$\sigma_1=0, \sigma_2=0, \tau=0$	D.	None of these		
23	The plane on which only one direct stress (σ_1) is acting, then find tangential stress (σ_t) on inclined plane having angle of θ° .					
	A.	$\frac{(\sigma_1 + \sigma_2)}{2} + \frac{(\sigma_1 - \sigma_2)}{2}\cos 2\theta + \tau \sin 2\theta$	B.	$\frac{(\sigma_1 + \sigma_2)}{2} - \frac{(\sigma_1 - \sigma_2)}{2} \cos 2\theta + \tau \sin 2\theta$		
	C.	$\frac{(\sigma_1 - \sigma_2)}{2} \sin 2\theta - \tau \cos 2\theta$	D.	$\sqrt{\sigma_n^2 + \sigma_t^2}$		
24	At a certain point in a strained material two stresses of 100 N/mm ² and 60 N/mm ² both tensile are acting on plane mutually perpendicular to each other. Find out tangential stress on a plane					
	inclined at 30° with the plane carrying the stress of 100 N/mm^2 .					
	A.	90 N/mm^2	B.	-90 N/mm ²		
25	<u>C.</u>	34.64 N/mm ⁻	D.	-34.64 N/mm^{-2}		
A piece of material is subjected to a tensile stress of 60 N/mm ² and com N/mm ² mutually perpendicular to each other. Find normal stresses on plan- the major principal plane.				rmal stresses on plane inclined at 30° with		
	A.	40 N/mm^2	В.	- 90 N/mm ²		
	C.	34.64 N/mm ²	D.	- 34.64 N/mm ²		
26	A pi	there of material is subjected to a tensile strength m^2 mutually perpendicular to each other. Find	ss of	80 N/mm ² and compressive stress of 160		
		30 N/mm ²	R	120 N/mm ²		
	<u> </u>	34 64 N/mm ²	D.	-34.64 N/mm^2		
27	The	planes, which carry no shear stress, are know	<u>, .</u> n as .	principal planes		
	A.	True	B.	false		
1	1		1			

	C.		D.		
28	Princ	Principle plane is a plane on which the shear stress is			
	A.	Zero	B.	Minimum	
	C.	Maximum	D.	None of these	
29	A body is subjected to a direct tensile stress of 300MPa in one plane accompanied by a simple				
shear stress of 200MPa. The minimum normal stress will be				vill be	
	A.	- 100 MPa	В.	250 MPa	
	C.	300 MPa	D.	400 MPa	
30 For biaxial stress, the planes of maximum shear are at right angles to each $at 45^{\circ}$ to the principle planes			right angles to each other and are inclined		
	A.	True	B.	False	
	C.		D.		
31 The magnitude of direct stress across a principle plane is known as			e is known as		
	A.	Principle plane	B.	Principle stress	
	C.	Normal stress	D.	Complimentary shear stress	
32	The	plane on which two direct stresses $\sigma_{\rm c}$ and $\sigma_{\rm c}$	are	acting on perpendicular planes, then	
	A.	$\sigma_2 = 0, \tau = 0$	B.	$\sigma_1 = 0, \tau = 0$	
	C.	$\sigma_2 = 0, \sigma_2 = 0, \tau = 0$	D.	$\tau = 0$	
33					
The plane on two direct stresses σ_1 and σ_2 are acting on p			cting on perpendicular planes, then find		
	tange	ential stress (σ_r) on inclined plane having ang	gle of	Ιθ.	
	A.	$\frac{(\sigma_1 + \sigma_2)}{2} + \frac{(\sigma_1 - \sigma_2)}{2}\cos 2\theta + \tau \sin 2\theta$	B.	$\frac{(\sigma_1 + \sigma_2)}{2} - \frac{(\sigma_1 - \sigma_2)}{2}\cos 2\theta + \tau \sin 2\theta$	
	C.	$\frac{(\sigma_1 - \sigma_2)}{2} \sin 2\theta - \tau \cos 2\theta$	D.	$\sqrt{{\sigma_n}^2 + {\sigma_t}^2}$	
34	At a	certain point in a strained material normal s	stress	of 90 N/mm ² and tangential stress 34.64	
	N/mm ² both tensile are acting on a plane. Find out resultant stress.				
	A.	90 N/mm	В.	-90 N/mm	
25	C.	34.64 N/mm	D.	96.43 N/mm	
35	N/mm ² at right angles to each other. It also carries a shear stress of 30 N/mm ² . Find principal stresses.				
	A.	$\sigma_{n1} = 87.08 \text{ N/mm}^2$, $\sigma_{n2} = -47.08 \text{ N/mm}^2$	В.	σ_{n1} = 60 N/mm² , σ_{n2} = $~60$ N/mm²	
	C.	σ_{n1} = $-$ 60 N/mm^2 , σ_{n2} = $-$ 60 N/mm^2	D.	None of these	
36	A piece of material is subjected to a tensile stress of 100 N/mm^2 and compressive stress of 60 N/mm^2 mutually perpendicular to each other. Find maximum shear stress.				
	A.	30 N/mm ²	В.	80 N/mm ²	
	C.	34.64 N/mm ²	D.	- 34.64 N/mm ²	
37	When a body is subjected to a direct tensile stress (σ) in one plane, then maximum normal stress occurs at a section inclined at to normal of section.				

	A.	0°	В.	30°	
	C.	45°	D.	90°	
38	When a body is subjected to a direct tensile stress (σ_x) in one plane accompanied by a simple shear stress (τ_{xy}) , the maximum normal stress is				
	А.	$\frac{\sigma_x}{2} + \frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	B.	$\frac{\sigma_x}{2} - \frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	
	C.	$\frac{\sigma_x}{2} + \frac{1}{2}\sqrt{\sigma_x^2 - 4\tau_{xy}^2}$	D.	$\frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	
39	A body is subjected to a direct tensile stress of 300MPa in one plane accompanied by a simple shear stress of 200MPa. The maximum shear stress will be				
	A.	- 100 MPa	В.	250 MPa	
	C.	300 MPa	D.	400 MPa	
40	The maximum shear stress is the algebraic difference of maximum and minimum normal stress.			c difference of maximum and minimum	
	A.	Equal to	В.	One-fourth	
	C.	One-half	D.	twice	
41	Which principle plane carries maximum direct stress?				
	А.	Major principle plane	В.	Minor principle plane	
	C.	Intermediate principle plane	D.	None of these	
42	The plane on which only one direct stress (σ_1) and shear stress (τ) are acting, then			ear stress (τ) are acting, then	
	A.	$\sigma_2 = 0$	B.	$\sigma_1 = 0, \tau = 0$	
	C.	$\sigma_1 = 0, \sigma_2 = 0, \tau = 0$	D.	$\tau = 0$	
43	When a body is subjected to a couple of shear stress (τ) on one plane and it is equilibrium, it must be accompanied by another couple of shear stress (τ ') opposite to first one. These shear stress (τ ') is called			ress (τ) on one plane and it is in e of shear stress (τ') opposite to the	
	А.	Shear stress	B.	Principle stress	
	C.	Complimentary shear stress	D.	Tangential stress	
44	A bl	ock is subjected to a complimentary shear s	stress	of 10 N/mm ² . Find normal stresses on a	
	plan	e inclined at 30° with vertical plane.		2	
	A.	8.66 N/mm ⁻	В.	- 5 N/mm ⁻	
1.7	<u>C.</u>	10 N/mm ²	D.		
45 A piece of material is subjected to a tensile stress of 60 N/mm ² and compress N/mm^2 mutually perpendicular to each other. Find tangential stresses on plane				and compressive stress of 20 angential stresses on plane inclined at 30°	
	with	the major principal plane.	п	00 N/mm^2	
	A.	90 N/mm ⁻	В.	- 90 N/mm ⁻	
4.5	<u>C.</u>	34.64 N/mm ⁻	D.	96.43 N/mm ⁻	
46	A piece of material is subjected to a tensile stress of 120 N/mm ² and compressive stress of 100				

	N/mm ² mutually perpendicular to each other. Find maximum shear stress.				
	А.	30 N/mm ²	В.	110 N/mm ²	
	C.	34.64 N/mm ²	D.	- 34.64 N/mm ²	
47	7 When a body is subjected to a direct tensile (σ), the maximum normal stress is equal to				
	direct tensile stress.				
	A.	True	В.	false	
	C.		D.		
48	When a body is subjected to a direct tensile stress (σ_x) in one plane accompanied by a simple				
	shear stress (τ_{xy}), the minimum normal stress is				
	А.	$\frac{\sigma_x}{2} + \frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	В.	$\frac{\sigma_{\rm x}}{2} - \frac{1}{2}\sqrt{\sigma_{\rm x}^2 + 4\tau_{\rm xy}^2}$	
	C.	$\frac{\sigma_x}{2} + \frac{1}{2}\sqrt{\sigma_x^2 - 4\tau_{xy}^2}$	D.	$\frac{1}{2}\sqrt{\sigma_x^2 + 4\tau_{xy}^2}$	
49	A body is subjected to a tensile stress of 1200MPa on one plane and other tensile stress of 600				
	MPa on a plane at right angles of the former. It is also subjected a shear stress 400 MPa on				
	same planes. The maximum nor mal stress will be				
	А.	400 MPa	В.	500 MPa	
	C.	900 MPa	D.	1400 MPa	
50	The	The maximum shear stress is equal to the radius of Mohr's circle.			
	A.	True	B.	False	
	C.		D.		